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Lyapunov exponents in unstable systems
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We investigate the dynamical behavior of unstable systems in the vicinity of the critical point associated
with a liquid-gas phase transition. By considering a mean-field treatment, we first perform a linear analysis and
discuss the instability growth times. Then, coming to complete Vlasov simulations, we investigate the role of
nonlinear effects and calculate the Lyapunov exponents. As a main result, we find that near the critical point,
the Lyapunov exponents exhibit a power-law behavior, with a critical expg8er@.5. This suggests that in
thermodynamical systems the Lyapunov exponent behaves as an order parameter to signal the transition from
the liquid to the gas phasgS1063-651X%99)09107-2

PACS numbd(s): 05.45—-a

[. INTRODUCTION phase transition, and we will try to discuss some general
features, not depending on the nature of the system consid-
In recent years the study of liquid-gas phase transitiongred. In particular, we will show that, at the critical density
has been the object of a renewed interest in different fields o, the largest Lyapunov exponent vanishes as T1T)?,
physics, expecially because of the possible connection to thehere T, is the critical temperature, witig~0.5. Prelimi-
description of the disassembly of systems out of equilibriumnary calculations have been performed using classical
[1-3]. In particular, second-order phase transitions arenolecular-dynamics simulations of a system exhibiting a lig-
known to exhibit general thermodynamical properties, whichuid to gas phase transitid6]. In that case it was, however,
are common to different complex systems. For instance, theumerically difficult to extract the behavior af in terms of
so-called critical exponents, which characterize the behaviogritical exponents.
of various physical observablésuch as the fluctuation cor-
relation length nearby the critical points of the phase dia-
gram under consideration, have been largely stufdéd Il. MEAN-FIELD DESCRIPTION OF UNSTABLE
While the statistical properties of systems presenting a SYSTEMS
coexistence of two or more phases seem now well estab-
lished, the dynamical properties and the time scales involved We will perform this study in the framework of a mean-
in the phase-transition process are presently under investigfeld approach. Let us consider, for the sake of simplicity, the
tion[2,3,5,8. In the case of systems unstable against densitgase of an infinite medium of particles having massThe
fluctuations(such as systems undergoing a liquid-gas phaséme evolution of the one-body density functid(r,p,t) is
transition, the dynamical evolution is dominated by the ex- governed by the Vlasov equation, which is written below:
ponential growth of the local density perturbations. This
means also that two different trajectories, having a small ot P of_dUlf] ot !
initial relative distancel, in phase space, will soon diverge gt m ar o ap @
exponentially. From this point of view, the Lyapunov expo-
nents[7] appear as an appropriate observable to study imhereU[f] denotes the self-consistent mean-field potential.
order to extract information on the dynamical evolution of For instance, one could consider a Skyrme-like parameter-
the system, since they tell how much two nearby trajectorieszation: U(p) = 2top+ t5p? [8], wherep(r,t) is the spatial
are separated after a timhe density: p(r,t)= fdpf(r,p,t). The parameters,,t; can be
In situations exhibiting a chaotic behavior, such as, foradjusted in order to reproduce saturation propefsesh as
instance, the case of the logistic mf, the Lyapunov ex-  saturation density and binding eneygy the system consid-
ponentsh are known to signal the transition from ordex (  ered.
<0) to chaos Xx>0). In the vicinity of a “critical point”
r.,A becomes equal to zero and, hence, it can be seen as an
order parameter that indicates the onset of chaos. The anal-
ogy with critical phenomena can be pushed further by writ-
ing A= (r—r.)?, where 8 can be interpreted as a critical Important information about the dynamical evolution of
exponent. Following this analogy, it is interesting to showan unstable system can be obtained already by performing a
that also in thermodynamical systems the Lyapunov expolinear-response analysis. This allows us to investigate the
nent behaves as an order parameter in the vicinity of a critiearly growth of instabilities and to calculate the instability
cal point. growth times. It is of interest to compare the inverse of the
We will work out a numerical estimation of Lyapunov growth times, which signal the occurrence of instabilities,
exponents, in the mean-field approximation, for a system lowith the Lyapunov exponents that are sensitive to nonlinear
cated near the critical point associated with a liquid-gaseffects. A complete solution of the Vlasov equation will be

Ill. LINEAR ANALYSIS OF UNSTABLE SYSTEMS
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considered in the next chapter. Then, since nonlinear effects

will also be present, we will calculate the Lyapunov expo-

nents and discuss the role of chaos. 0.25
The small fluctuationsSf around a thermal equilibrium
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identified by f, are determined considering the linearized 0.20 ; L AL S B G
equation: ' / 0.20 [— ‘
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where §U represents the fluctuating part of the mean-field 0.10 0.02 ,_ Y P P

potential. Carrying out a Fourier transform with respect to 0.05 0.10 0.20 0.50 1.00
time and considering the plane-wave representation, we ob- 0.05
tain the following dispersion relation for the frequensy of

the collective mode associated with the wave numbje]:
.k ' —
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FIG. 1. The value ofy,= —iw\/(kvg) is plotted as a function

where e:pZ/(Zm), andU, is the Fourier transform of the of (1-T/T) (solid line) in the case of a system of fermions. The
mean-field potential. The solutions, come by pairs of op- dashed line represents the result obtained for a classical system. In
posite sign, similarly as we will see later on to thelt turns  the inset we plot the two curves on a log-log scale.

out that for systems initialized inside an unstable region of

their phase diagrarfsuch as systems undergoing a liquid-gasthe critical point, let us expand the left hand side of E4.
phase transition the solutionsv, become imaginary, so that around the critical temperatufg,. Considering the expan-
the local-density fluctuations are amplified, leading to an inSion up to second-order terms, we haver WFq(k,T)
stability. It should be noticed that, in this situation and within = ax(1—T/T¢) + 120 (1-T/Tc)?,  with  a=—Fo(k,T

the linear analysis, the divergence of two close trajectories is-0)(72/6)(T./ez)?> and  b,=—a,— Fa(k,T=0) (="
just due to the presence of instabilities, such as in the case aB)(T./eg)*. Now the dispersion relation can be solved con-
systems of uncoupled invertédnstablé oscillators[10]. As  sidering that in the range of solutions of our interest,
a measure of the instabilities, we will consider the inverse ofy,arctan(14,) ~ 7/2y,— vZ. The solution is

the characteristic growth time for the amplification of fluc-
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tuations :—iwy=1/7. yie= wlA—\7?16—[1+ 1Fo(k,T)]. (5)
Let us concentrate on the behavior«f in the vicinity of
the border of the unstable regidthe spinodal border All peveloping up to second-order terms in{T/T,), we ob-

along this linew, is equal to zero and it is interesting to tain:

investigate how the solutions of E) reach this limit. To

perform this analysis, let us consider two examples: a gas of,, ~2/za,(1-T/T,)+ 1/2(16/m3a + 2/7b, ) (1—TIT,)?,

fermions o={1+exg(e—w)/T]} ¥n% and a gas of classi- 6)

cal particles[fo,=p/(2mT)¥%exp(—€/T)] initialized at a

given temperaturd and densityp. u denotes the chemical \yhich shows that whefi~T,, the behavior ofy, is linear.

potential. The solution of the dispersion relatidB) is presented in
Fig 1 (solid ling). In the calculations we have takeéf(T

A. Fermionic systems =0)=-1.36 ande=19.5 MeV. This corresponds to the

- _ 73 _ — . .
Let us first consider the case of fermions. At zero tem-density valuep=0.065 fm ° and k=0.6 fm™*, which is

perature, for imaginary frequencies, 8) can be rewritten the mode for which the largest value gf is obtained(the
under the form, most unstable modeln the inset of Fig 1, the curve is plot-

ted in a log-log scale.

1+ 1/Fy(k)= 7y, arctail/yy), 4

. i . . B. Classical systems
where y=—iw,/(kvg), and vg is the Fermi velocity, ) ) )
analogous to the Lyapunov exponent. Here we have intro- In the case of classical systems, the dispersion relaipn
duced the Landau parameteg(k) = (3/2)(3U,/dp)(p/ €g), can be approximately solved£0n5|de_r|ng again the solutions
as done in Ref{9]. of Eq. (4), wherey,= —iwy/(kv), andv is the average par-

At finite temperature, an approximate solution to the disticle velocity associated with the temperaturg:v

persion relation(3) is obtained by considering the Sommer- =2/(m#)Y%(2T)"2 and with the Landau parameteg(k, T)
feld expansion forf,, truncated at the second order in defined asFq(k,T)=(dU,/dp)(p/T). Now the left-hand

(T/eF). Then Eq.(3) can be still approximately rewritten side of Eq.(4) can be written as follows: +1/Fy(k,T)
under the form (4) after introducing the temperature- =g (k,T.)(T/T,—1)=(1-T/T.). We find

dependent Landau parameteF,(k,T)=Fy(k,T=0)[1
—w?/12(T/eg)?]. In order to study the behavior af, near —iw=2k(2T/mm) Y 7ld— 7216— (1-TITy)]. (7)
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Developing up to second-order terms, the solution is

ve=2lm(1—TITe) + 1216/ —2/7)(1-TIT)?. (8) 0.25

The solution fory, is presented in Fig. 1dashed ling

As it is possible to see from the figure and also from the __~ 0.20
shape of the approximate solutioftsgs(6) and (8)], in the .5
linear approximation, i.e., considering only the first-order <

0.15
terms in 8f, the behavior ofy, around the critical tempera- ~
ture is linear. Indeed, in the vicinity of ; we find y,oc(1 Fa
_T/TC) . i . 0.10 ® 0.021—||||||| I 1 |||||||
The same behavior is found not only around the critical 0.05 0.10 0.20 0.50 1.00
point, but also all along the spinodal line. 0.05
IV. COMPLETE VLASOV SIMULATIONS P S T T
0.0 0.2 0.4 0.6 0.8 1.0

It should be noticed that in complete mean-field calcula- 1-T/T
tions also higher-order terms iéf will play a role, espe- e

cially in the unstable region. Indeed, the complete VIasov g 2 The largest Lyapunov exponent/(kug), obtained in
equation contains nonlinear terms, which are expected to bgne case of a fermionic system, is plotted as a function of (1

come more and more im.portant. when approaching the spin=T/T,) (full circles). The value ofy, is also reported for compari-
odal border and the critical point. When nonlinear effectsson(full line). In the inset the results are plotted on a log-log scale.
play an important role, chaos sets in and the behavior of the

Lyapunov exponents can give important indications on this  aq in Ref. [5], the distancel(t) is obtained dividing the

process. An evaluation of can be obtained by considering a 5406 into cells and calculating the difference between the
numerical solution to the Vlasov equation. In this way all perturbed density, and p,. The sums, runs over the sites

nonlinear effects will be taken into account. We solve theof the space cells.

Viasov equatior_1 using the test pr_:trticle ”ﬁe‘hOd: a giV(_an NUM- Then we consider the Fourier transfordp,(t) of the
ber of test particledN,.; is associated with each particle of time-dependent density fluctuatiodp, (t) = p, (t)— pe, and

the system, i.e., we write we construct the equal time correlation functiorf(t)
Nest A =(8py(t) 8p(1)) (where the ensemble average is taken over
f(r,p,t)=C 2 g(r=r)g(p—p), the 50 events consideredWe define thek-dependent
i Lyapunov exponents as\(t)=1/(t)In[o(t)/0(0)]. The
value of Ay is taken at large times, when a plateau is ob-
served in the time evolution. We notice that this definition
allows us to study separately the behavior of the modes of
the spatial density associated with the wave nuntbeso
this can be considered as an analysis in terms of plane waves
(or spectral analysjof the Lyapunov exponent [Eq. (9)]
[11]. In Fig. 2 we plot the value aof /(kvg) (full circles) for
the modek=0.6 fm ! that gives the largest value df, as a
Finally, from the time evolution of the test particles it is function of the temperature and we compare it to the trend
possible to trace back the time behavior of the one-bodybserved in the same situation fgg (solid line). In this way
density function[8]. It should be noted that because of the On€ can investigate the role of nonlinear effects and the onset
random sampling of the phase space due to the use of a finifd chaos. In the inset the results are plotted in a log-log scale.
number of test particles, this method naturally introduces/Ve observe a discrepancy with respect to the behavior given
some fluctuations in the solution of the Vlasov equation. PY the linear response analysis, especially in the high-
We will present calculations performed for an infinite sys-t€mperature region. In particular, it is possible to see that the
tem of fermions, using periodic boundary conditions. In thebehavior —of the ~Lyapunov ~exponent around=T,

case of classical systems, the same qualitative behavior i515 MeV is not linear. The differences observed between
obtained. A\ andy, can be considered as an indication of the impor-

We consider the density valyg=0.065 fm 3 and sev- tance of nonlinear effects in complete Vlasov calculations.
eral temperature valuedl=10560 test particles have been ~ We have considered also a different possible evaluation of
used, and 50 events, differing just because of the fluctuatinf’€ largest Lyapunov exponent. We will adopt the definition
initial conditions, have been considered. To keep the analogysed in Ref[12]: X = (1/t)In[d(t)/d(0)], with
with the previous discussion on the instability paramejgr

where the sum runs over the total numbir N, A of test
particles @ is the number of particl¢sand the functiong
are Gaussian€ is a normalization factor. Inserting this ex-
pression into the Vlasov equatidiqg. (2)] gives the equa-
tions of motion for the test particles:

r=p/m; p=-ViU), i=1,...N.

we have adopted the following definition of the Lyapunov N
exponent:A = (1/t) In[d(t)/d(0)], with d2() =2 [, (rM—r®)2+ a,(pM—p3)2)/N. (10
=1
di(t)=2, dpi= —po)?. 9
® 2 Pr Z (Pr=po) © d(t) represents the distance in phase space between two
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Temperature T (MeV) FIG. 4. The largest Lyapunov exponent(full circles) is com-

. pared to the largesk, (open circleg at the critical densityp
FIG. 3. The largest Lyapunov exponentsee text for detallas ~0.06 fm™2. The solid line represents a fit with a power law.
a function of the temperature for different density values: diamonds,
— — 3. i — 3. . '
11_0'04 fr_“s_ ; full circles, P__O'OB fm_s'. open squares,p  gatyration problem, the defined by Eq(10) and the largest
=0.02 fm,?,’ open .C'r.des’ p=0.08 fm . full squares, p -\ take quite similar values, as is shown in Fig. 4.
=0.09 fm °. The solid line represents a fit of the points obtained In conclusion, the introduction of nonlinear effe¢tnd
_ _3 . . . i _ , : _
atp (.)'06 fm - These points and the fit are plotted in a log-log the possible occurrence of chaasssentially determines a
scale in the inset. .
change of the exponeigt. Indeed we have seen that in the

close trajectories (1) an(R). As shown in Ref[12], the linear approximation the inverse of the instability growth

results obtained fok are independent of the values used fortime 7y vanishes linearly in the vicinity of the critical point.
a, anda,. In Fig. 5 we use a different representation and we plot, for

Here we usey,=0,a,=1. Indeed, in a homogeneous in- differ_ent temperature .values, the Ly_apunov exponent as a
finite system, the resulting definition, based on the momenfunction of the density. At the critical temperature, the
tum distance among particles of close trajectories, is wellyapunov exponent reaches its saturation value for all den-
suited to study the response of the system to a small initiadities considered wh|I9 reducing tr_]e temperature it increases,
perturbation. In fact, in absence of perturbations, since th@"d reaches the maximum value in correspondence to densi-
system is perfectly homogeneous, the particles do not fedi€S close to the critical density.
any force; the distancd(t) would not evolve and. would
be zero. V. CONCLUSIONS

In Fig. 3 the results are plotted at different density values . . . .
as a fur?ction of the tempergture. We note that the rgsults are we halve |n\:jest|gatbed ';]he b_e_ha}nor_of therm_o dygamur:]al
very similar to the ones obtained in the case of the larggst ?ystgms Ocﬁte nearby t el cr|rt]|ca|_ point associated with a
(see Fig. 2 The important point to notice is that around the lquid-gas phase transition. In the finear approximation, we
critical densityp.~0.06 fm 3, the behavior oh as a func- 0.08
tion of the temperature is of the type IT/T.)?, with B
=0.5. Indeed it is possible to fit the points with a cuive
*(1-T/T,)%® (solid line). This result suggests that the
Lyapunov exponent behaves as an order parameter neark
the critical point associated with a liquid-gas phase transi-
tion. Also, it is interesting to notice that according to the
Landau theory, the critical exponent expected in the mean-&
field theory is equal tg8=0.5[13]. Actually, in our numeri- 9
cal calculations the Lyapunov exponents are not zero alon¢.«
the spinodal line, but we observe a saturation around the 0.03
valueh = A¢,~0.015 fmi 1. This is due to the use of a finite
number of test particles in the simulations. In fact the finite
mapping of the phase space creates some small fluctuatior 0.02
in the mean field and the particles move in response to that A
even in stable situations, where these fluctuations are no o oo oo oo o0
amplified. Consequently, the Lyapunov exponent keeps a fi- Density p (fm_a)
nite value. Going to the limit of an infinite number of test
particles, the spatial density would become perfectly homo- FIG. 5. The largest Lyapunov exponentas a function of the
geneous. Hence, the particles would not see any variation afensity. The different curves are isotherms. The temperature values
the mean-field potential andwould vanish. Apart from this are(from top to bottom 1,3,5,7,9,11,13, and 15 MeV.
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study the instability growth times. We find that the growth behavior: \<(1—T/T.)#, with 8=0.5. This suggests that
times vanish linearly 8=1) along the spinodal border, in- the Lyapunov exponent can be seen as an order parameter to
dicating the transition from unstable to stable situationssignal the transition from the liquid to the gas phase. The
Solving numerically the complete Vlasov equation, we dis-value found for the critical exponeg=0.5 is in agreement
cuss the behavior of the Lyapunov exponents. This analysiwith the predictions of the Landau mean-field theory. Con-
indicates the importance of nonlinear effects that could sigsidering the case of classical and fermionic systems, we find
nal the onset of chaos when the temperature approaches ttieat the value of the critical exponent is independent on the
critical temperature. The trend observed follows a power-lawstatistics of particles.
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