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Lyapunov exponents in unstable systems

M. Colonna and A. Bonasera
Laboratorio Nazionale del Sud, Via S. Sofia 44, I-95123 Catania, Italy
~Received 19 June 1998; revised manuscript received 3 March 1999!

We investigate the dynamical behavior of unstable systems in the vicinity of the critical point associated
with a liquid-gas phase transition. By considering a mean-field treatment, we first perform a linear analysis and
discuss the instability growth times. Then, coming to complete Vlasov simulations, we investigate the role of
nonlinear effects and calculate the Lyapunov exponents. As a main result, we find that near the critical point,
the Lyapunov exponents exhibit a power-law behavior, with a critical exponentb50.5. This suggests that in
thermodynamical systems the Lyapunov exponent behaves as an order parameter to signal the transition from
the liquid to the gas phase.@S1063-651X~99!09107-2#
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I. INTRODUCTION

In recent years the study of liquid-gas phase transiti
has been the object of a renewed interest in different field
physics, expecially because of the possible connection to
description of the disassembly of systems out of equilibri
@1–3#. In particular, second-order phase transitions
known to exhibit general thermodynamical properties, wh
are common to different complex systems. For instance,
so-called critical exponents, which characterize the beha
of various physical observables~such as the fluctuation cor
relation length! nearby the critical points of the phase di
gram under consideration, have been largely studied@4#.

While the statistical properties of systems presentin
coexistence of two or more phases seem now well es
lished, the dynamical properties and the time scales invol
in the phase-transition process are presently under inves
tion @2,3,5,6#. In the case of systems unstable against den
fluctuations~such as systems undergoing a liquid-gas ph
transition!, the dynamical evolution is dominated by the e
ponential growth of the local density perturbations. Th
means also that two different trajectories, having a sm
initial relative distanced0 in phase space, will soon diverg
exponentially. From this point of view, the Lyapunov exp
nents @7# appear as an appropriate observable to study
order to extract information on the dynamical evolution
the system, since they tell how much two nearby trajecto
are separated after a timet.

In situations exhibiting a chaotic behavior, such as,
instance, the case of the logistic map@7#, the Lyapunov ex-
ponentsl are known to signal the transition from order (l
,0) to chaos (l.0). In the vicinity of a ‘‘critical point’’
r c ,l becomes equal to zero and, hence, it can be seen a
order parameter that indicates the onset of chaos. The a
ogy with critical phenomena can be pushed further by w
ing l}(r 2r c)

b, where b can be interpreted as a critica
exponent. Following this analogy, it is interesting to sho
that also in thermodynamical systems the Lyapunov ex
nent behaves as an order parameter in the vicinity of a c
cal point.

We will work out a numerical estimation of Lyapuno
exponents, in the mean-field approximation, for a system
cated near the critical point associated with a liquid-g
PRE 601063-651X/99/60~1!/444~5!/$15.00
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phase transition, and we will try to discuss some gene
features, not depending on the nature of the system con
ered. In particular, we will show that, at the critical dens
rc , the largest Lyapunov exponent vanishes as (12T/Tc)

b,
whereTc is the critical temperature, withb'0.5. Prelimi-
nary calculations have been performed using class
molecular-dynamics simulations of a system exhibiting a l
uid to gas phase transition@6#. In that case it was, however
numerically difficult to extract the behavior ofl in terms of
critical exponents.

II. MEAN-FIELD DESCRIPTION OF UNSTABLE
SYSTEMS

We will perform this study in the framework of a mean
field approach. Let us consider, for the sake of simplicity,
case of an infinite medium of particles having massm. The
time evolution of the one-body density functionf (r ,p,t) is
governed by the Vlasov equation, which is written below

] f

]t
1

p

m
•

] f

]r
2

]U@ f #

]r
•

] f

]p
50, ~1!

whereU@ f # denotes the self-consistent mean-field potent
For instance, one could consider a Skyrme-like parame
ization:U(r)5 3

4 t0r1 3
16 t3r2 @8#, wherer(r ,t) is the spatial

density:r(r ,t)5*dpf (r ,p,t). The parameterst0 ,t3 can be
adjusted in order to reproduce saturation properties~such as
saturation density and binding energy! of the system consid-
ered.

III. LINEAR ANALYSIS OF UNSTABLE SYSTEMS

Important information about the dynamical evolution
an unstable system can be obtained already by performi
linear-response analysis. This allows us to investigate
early growth of instabilities and to calculate the instabil
growth times. It is of interest to compare the inverse of t
growth times, which signal the occurrence of instabilitie
with the Lyapunov exponents that are sensitive to nonlin
effects. A complete solution of the Vlasov equation will b
444 ©1999 The American Physical Society
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PRE 60 445LYAPUNOV EXPONENTS IN UNSTABLE SYSTEMS
considered in the next chapter. Then, since nonlinear eff
will also be present, we will calculate the Lyapunov exp
nents and discuss the role of chaos.

The small fluctuationsd f around a thermal equilibrium
identified by f 0 are determined considering the lineariz
equation:

]d f

]t
1

]d f

]r
•

p

m
2

] f 0

]p
•

]dU

]r
50, ~2!

wheredU represents the fluctuating part of the mean-fi
potential. Carrying out a Fourier transform with respect
time and considering the plane-wave representation, we
tain the following dispersion relation for the frequencyvk of
the collective mode associated with the wave numberk @9#:

15E dpS ]Uk

]r

p•k

m

] f 0

]e D Y S vk1
p•k

m D , ~3!

wheree5p2/(2m), andUk is the Fourier transform of the
mean-field potential. The solutionsvk come by pairs of op-
posite sign, similarly as we will see later on to thel. It turns
out that for systems initialized inside an unstable region
their phase diagram~such as systems undergoing a liquid-g
phase transition!, the solutionsvk become imaginary, so tha
the local-density fluctuations are amplified, leading to an
stability. It should be noticed that, in this situation and with
the linear analysis, the divergence of two close trajectorie
just due to the presence of instabilities, such as in the cas
systems of uncoupled inverted~unstable! oscillators@10#. As
a measure of the instabilities, we will consider the inverse
the characteristic growth time for the amplification of flu
tuations :2 ivk51/tk .

Let us concentrate on the behavior ofvk in the vicinity of
the border of the unstable region~the spinodal border!. All
along this linevk is equal to zero and it is interesting t
investigate how the solutions of Eq.~3! reach this limit. To
perform this analysis, let us consider two examples: a ga
fermions (f 05$11exp@(e2m)/T#%21/h3) and a gas of classi
cal particles@ f 05r/(2pmT)3/2exp(2e/T)# initialized at a
given temperatureT and densityr. m denotes the chemica
potential.

A. Fermionic systems

Let us first consider the case of fermions. At zero te
perature, for imaginary frequencies, Eq.~3! can be rewritten
under the form,

111/F0~k!5gk arctan~1/gk!, ~4!

where gk52 ivk /(kvF), and vF is the Fermi velocity,
analogous to the Lyapunov exponent. Here we have in
duced the Landau parameterF0(k)5(3/2)(]Uk /]r)(r/eF),
as done in Ref.@9#.

At finite temperature, an approximate solution to the d
persion relation~3! is obtained by considering the Somme
feld expansion for f 0, truncated at the second order
(T/eF). Then Eq.~3! can be still approximately rewritten
under the form ~4! after introducing the temperature
dependent Landau parameterF0(k,T)5F0(k,T50)@1
2p2/12(T/eF)2#. In order to study the behavior ofgk near
ts
-

b-

f
s

-

is
of

f

of

-

o-

-

the critical point, let us expand the left hand side of Eq.~4!
around the critical temperatureTc . Considering the expan
sion up to second-order terms, we have 111/F0(k,T)
5ak(12T/Tc)11/2bk(12T/Tc)

2, with ak52F0(k,T
50)(p2/6)(Tc /eF)2 and bk52ak2F0

2(k,T50)(p4/
18)(Tc /eF)4. Now the dispersion relation can be solved co
sidering that in the range of solutions of our intere
gkarctan(1/gk)'p/2gk2gk

2 . The solution is

gk'p/42Ap2/162@111/F0~k,T!#. ~5!

Developing up to second-order terms in (12T/Tc), we ob-
tain:

gk'2/pak~12T/Tc!11/2~16/p3ak
212/pbk!~12T/Tc!

2,
~6!

which shows that whenT'Tc , the behavior ofgk is linear.
The solution of the dispersion relation~3! is presented in

Fig 1 ~solid line!. In the calculations we have takenF0(T
50)521.36 andeF519.5 MeV. This corresponds to th
density valuer50.065 fm23 and k50.6 fm21, which is
the mode for which the largest value ofgk is obtained~the
most unstable mode!. In the inset of Fig 1, the curve is plot
ted in a log-log scale.

B. Classical systems

In the case of classical systems, the dispersion relation~3!
can be approximately solved considering again the soluti
of Eq. ~4!, wheregk52 ivk /(kv̄), andv̄ is the average par
ticle velocity associated with the temperatureT: v̄
52/(mp)1/2(2T)1/2, and with the Landau parameterF0(k,T)
defined asF0(k,T)5(]Uk /]r)(r/T). Now the left-hand
side of Eq. ~4! can be written as follows: 111/F0(k,T)
5F0(k,Tc)(T/Tc21)5(12T/Tc). We find

2 ivk'2k~2T/mp!1/2@p/42Ap2/162~12T/Tc!#. ~7!

FIG. 1. The value ofgk52 ivk /(kvF) is plotted as a function
of (12T/Tc) ~solid line! in the case of a system of fermions. Th
dashed line represents the result obtained for a classical syste
the inset we plot the two curves on a log-log scale.
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446 PRE 60M. COLONNA AND A. BONASERA
Developing up to second-order terms, the solution is

gk'2/p~12T/Tc!11/2~16/p322/p!~12T/Tc!
2. ~8!

The solution forgk is presented in Fig. 1~dashed line!.
As it is possible to see from the figure and also from

shape of the approximate solutions@Eqs.~6! and ~8!#, in the
linear approximation, i.e., considering only the first-ord
terms ind f , the behavior ofgk around the critical tempera
ture is linear. Indeed, in the vicinity ofTc we find gk}(1
2T/Tc).

The same behavior is found not only around the criti
point, but also all along the spinodal line.

IV. COMPLETE VLASOV SIMULATIONS

It should be noticed that in complete mean-field calcu
tions also higher-order terms ind f will play a role, espe-
cially in the unstable region. Indeed, the complete Vlas
equation contains nonlinear terms, which are expected to
come more and more important when approaching the s
odal border and the critical point. When nonlinear effe
play an important role, chaos sets in and the behavior of
Lyapunov exponentsl can give important indications on thi
process. An evaluation ofl can be obtained by considering
numerical solution to the Vlasov equation. In this way
nonlinear effects will be taken into account. We solve t
Vlasov equation using the test particle method: a given nu
ber of test particlesNtest is associated with each particle o
the system, i.e., we write

f ~r ,p,t !5C (
i

Ntest•A

g~r2r i!g~p2pi!,

where the sum runs over the total numberN5Ntest•A of test
particles (A is the number of particles! and the functionsg
are Gaussians.C is a normalization factor. Inserting this ex
pression into the Vlasov equation@Eq. ~2!# gives the equa-
tions of motion for the test particles:

r i̇5pi /m; pi̇52“ i^U&, i 51, . . . ,N.

Finally, from the time evolution of the test particles it
possible to trace back the time behavior of the one-b
density function@8#. It should be noted that because of t
random sampling of the phase space due to the use of a
number of test particles, this method naturally introduc
some fluctuations in the solution of the Vlasov equation.

We will present calculations performed for an infinite sy
tem of fermions, using periodic boundary conditions. In t
case of classical systems, the same qualitative behavio
obtained.

We consider the density valuer050.065 fm23 and sev-
eral temperature values.N510 560 test particles have bee
used, and 50 events, differing just because of the fluctua
initial conditions, have been considered. To keep the ana
with the previous discussion on the instability parametergk ,
we have adopted the following definition of the Lyapun
exponent:l5(1/t)ln@d(t)/d(0)#, with

d2~ t !5(
r

dr r
25(

r
~r r2r0!2. ~9!
e
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As in Ref. @5#, the distanced(t) is obtained dividing the
space into cells and calculating the difference between
perturbed densityr r andr0. The sum( r runs over the sites
of the space cells.

Then we consider the Fourier transformdrk(t) of the
time-dependent density fluctuationdr r(t)5r r(t)2r0, and
we construct the equal time correlation functionsk

2(t)
5^drk(t)drk(t)& ~where the ensemble average is taken o
the 50 events considered!. We define thek-dependent
Lyapunov exponents aslk(t)51/(t)ln@sk(t)/sk(0)#. The
value of lk is taken at large times, when a plateau is o
served in the time evolution. We notice that this definiti
allows us to study separately the behavior of the modes
the spatial density associated with the wave numberk. So
this can be considered as an analysis in terms of plane w
~or spectral analysis! of the Lyapunov exponentl @Eq. ~9!#
@11#. In Fig. 2 we plot the value oflk /(kvF) ~full circles! for
the modek50.6 fm21 that gives the largest value oflk as a
function of the temperature and we compare it to the tre
observed in the same situation forgk ~solid line!. In this way
one can investigate the role of nonlinear effects and the o
of chaos. In the inset the results are plotted in a log-log sc
We observe a discrepancy with respect to the behavior g
by the linear response analysis, especially in the hi
temperature region. In particular, it is possible to see that
behavior of the Lyapunov exponent aroundT5Tc
'15 MeV is not linear. The differences observed betwe
lk andgk can be considered as an indication of the imp
tance of nonlinear effects in complete Vlasov calculation

We have considered also a different possible evaluatio
the largest Lyapunov exponent. We will adopt the definiti
used in Ref.@12#: l5(1/t)ln@d(t)/d(0)#, with

d2~ t !5(
i 51

N

@a r~r i
(1)2r i

(2)!21ap~pi
(1)2pi

(2)!2#/N. ~10!

d(t) represents the distance in phase space between

FIG. 2. The largest Lyapunov exponentlk /(kvF), obtained in
the case of a fermionic system, is plotted as a function of
2T/Tc) ~full circles!. The value ofgk is also reported for compari
son~full line!. In the inset the results are plotted on a log-log sca
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PRE 60 447LYAPUNOV EXPONENTS IN UNSTABLE SYSTEMS
close trajectories (1) and(2). As shown in Ref.@12#, the
results obtained forl are independent of the values used
a r andap .

Here we usea r50,ap51. Indeed, in a homogeneous in
finite system, the resulting definition, based on the mom
tum distance among particles of close trajectories, is w
suited to study the response of the system to a small in
perturbation. In fact, in absence of perturbations, since
system is perfectly homogeneous, the particles do not
any force; the distanced(t) would not evolve andl would
be zero.

In Fig. 3 the results are plotted at different density valu
as a function of the temperature. We note that the results
very similar to the ones obtained in the case of the largeslk
~see Fig. 2!. The important point to notice is that around th
critical densityrc'0.06 fm23, the behavior ofl as a func-
tion of the temperature is of the type (12T/Tc)

b, with b
50.5. Indeed it is possible to fit the points with a curvel
}(12T/Tc)

0.5 ~solid line!. This result suggests that th
Lyapunov exponent behaves as an order parameter ne
the critical point associated with a liquid-gas phase tran
tion. Also, it is interesting to notice that according to t
Landau theory, the critical exponent expected in the me
field theory is equal tob50.5 @13#. Actually, in our numeri-
cal calculations the Lyapunov exponents are not zero al
the spinodal line, but we observe a saturation around
valuel5lsat'0.015 fm21. This is due to the use of a finit
number of test particles in the simulations. In fact the fin
mapping of the phase space creates some small fluctua
in the mean field and the particles move in response to t
even in stable situations, where these fluctuations are
amplified. Consequently, the Lyapunov exponent keeps
nite value. Going to the limit of an infinite number of te
particles, the spatial density would become perfectly hom
geneous. Hence, the particles would not see any variatio
the mean-field potential andl would vanish. Apart from this

FIG. 3. The largest Lyapunov exponentl ~see text for detail! as
a function of the temperature for different density values: diamon
r50.04 fm23; full circles, r50.06 fm23; open squares,r
50.02 fm23; open circles, r50.08 fm23; full squares, r
50.09 fm23. The solid line represents a fit of the points obtain
at r50.06 fm23. These points and the fit are plotted in a log-lo
scale in the inset.
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saturation problem, thel defined by Eq.~10! and the largest
lk take quite similar values, as is shown in Fig. 4.

In conclusion, the introduction of nonlinear effects~and
the possible occurrence of chaos! essentially determines
change of the exponentb. Indeed we have seen that in th
linear approximation the inverse of the instability grow
time g vanishes linearly in the vicinity of the critical point

In Fig. 5 we use a different representation and we plot,
different temperature values, the Lyapunov exponent a
function of the density. At the critical temperature, th
Lyapunov exponent reaches its saturation value for all d
sities considered while reducing the temperature it increa
and reaches the maximum value in correspondence to de
ties close to the critical density.

V. CONCLUSIONS

We have investigated the behavior of thermodynami
systems located nearby the critical point associated wit
liquid-gas phase transition. In the linear approximation,

s,

FIG. 4. The largest Lyapunov exponentl ~full circles! is com-
pared to the largestlk ~open circles!, at the critical densityr
'0.06 fm23. The solid line represents a fit with a power law.

FIG. 5. The largest Lyapunov exponentl as a function of the
density. The different curves are isotherms. The temperature va
are ~from top to bottom! 1,3,5,7,9,11,13, and 15 MeV.
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448 PRE 60M. COLONNA AND A. BONASERA
study the instability growth times. We find that the grow
times vanish linearly (b51) along the spinodal border, in
dicating the transition from unstable to stable situatio
Solving numerically the complete Vlasov equation, we d
cuss the behavior of the Lyapunov exponents. This anal
indicates the importance of nonlinear effects that could s
nal the onset of chaos when the temperature approache
critical temperature. The trend observed follows a power-
,

s.
.
-
is
-
the
w

behavior:l}(12T/Tc)
b, with b50.5. This suggests tha

the Lyapunov exponent can be seen as an order parame
signal the transition from the liquid to the gas phase. T
value found for the critical exponentb50.5 is in agreement
with the predictions of the Landau mean-field theory. Co
sidering the case of classical and fermionic systems, we
that the value of the critical exponent is independent on
statistics of particles.
hys.
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